Транспирация растений
Содержание:
- Интенсивность испарения
- Интенсивность транспирации
- Что такое транспирация
- Кавитация
- Интенсивность транспирации
- Лист как орган транспирации. Устьичная и кутикулярная транспирация
- Суточный ход транспирации
- Женские духи Tom Ford Black Orchid: описание аромата
- Тест на тему: «Значение воды в жизни растений. Испарение воды листьями»
- Проект «Что такое транспирация у растений»
- Механизм транспирации
- Влияющие факторы
- Регуляция
Интенсивность испарения
Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.
Интенсивность испарения зависит от следующих факторов:
- Температура поверхности. Чем выше температура, тем больше испарение. После дождя в Санкт-Петербурге улицы долгое время остаются влажными, а вот в Таиланде даже в сезон дождей все высыхает быстро — из-за высокой температуры. Но это только если в сезон дождей дождь умудрился прекратиться 🙂
- Ветер. Чем больше скорость ветра, тем больше испарение. Фен для волос работает на этом принципе — по сути, он создает портативный ветер, который помогает высушить ваши волосы.
- Дефицит влажности. Интенсивность испарения будет выше там, где больше дефицит влажности. Вряд ли многие из нас были Сахаре, но что это такое представляют все. В любой пустыне колоссально низкая влажность — из-за этого испарение идет интенсивнее.
- Давление. Чем больше давление, тем меньше испарение. Мы уже выяснили, что не смотря на разницу между кипением и испарением, эти два процесса между собой связаны. Таким образом, температура кипения воды на вершине Эвереста равна 69 градусам Цельсия. В то время, как в нашей повседневной жизни она равна 100. Это возвращает нас к первому фактору — температуре.
Кажется, правильнее говорить «скорость испарения» вместо интенсивности? Или нет?
Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.
Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.
По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.
Интенсивность транспирации
Интенсивность транспирации – это количество влаги, испаряемой с дм 2 растения за расчетную единицу времени. Данный параметр регулируется величиной раскрытия устьичных щелей, которая, в свою очередь, зависит от количества попадающего на растение света. Далее рассмотрим, как влияет свет на интенсивность транспирации.
Деформация клеток эпидермиса проходит под действием фотосинтеза, в процессе которого происходит преобразование крахмала в сахара.
- При свете у растений начинается процесс фотосинтеза. Давление в замыкающих клетках увеличивается, что дает возможность вытягивать воду из соседних клеток эпидермиса. Объем клеток увеличивается, устьица раскрываются.
- В вечернее и ночное время происходит преобразования сахаров в крахмал, в процессе которого клетки эпидермиса «откачивают» влагу из замыкающих клеток растения. Их объем уменьшается, устьица закрываются.
Помимо света на интенсивность транспирации оказывает влияние ветер и физические характеристики воздуха:
- Чем ниже уровень влажности атмосферного воздуха, тем быстрее происходит испарение воды, а значит и скорость влагообмена.
- При повышении температуры возрастает упругость водяных паров, которая приводит к снижению влажностных характеристик окружающей среды и увеличению объема испаряемой воды.
- Под влиянием ветра значительно увеличивается скорость испарение влаги, тем самым ускоряется перенос влажного воздуха с поверхности листа, вызывая усиление водообмена.
Для определения данного параметра не следует забывать и об уровне влажности почвы. Если ее недостаточно, значит и наблюдается ее недостаток в растении. Снижение объема влаги в растительном организме автоматически изменяет интенсивность испарения.
Что такое транспирация
Транспирация – это регулируемый физиологический процесс движения воды по органам растительного организма, завершающийся ее потерей через испарение.
Знаете ли вы? Слово «транспирация» происходит от двух латинских слов: trans – через и spiro – дыхание, дышать, выдыхать. Дословно термин переводится как выделение пота, потение, испарина.
В процессе этого движения большая часть влаги теряется (испаряется), особенно при ярком свете, сухом воздухе, сильном ветре и высокой температуре.
Таким образом, под влиянием атмосферных факторов запасы воды в надземных органах растения постоянно расходуются и, следовательно, должны все время пополняться за счет новых поступлений. По мере испарения воды в клетках растения возникает некая сосущая сила, которая «подтягивает» воду из соседних клеток и так по цепочке – до самых корней. Таким образом, главный «двигатель» тока воды от корней к листьям находится именно в верхних частях растений, которые, говоря упрощенно, работают как маленькие насосы.
Если вникнуть в процесс чуть глубже, то водный обмен в жизни растений представляет собой следующую цепочку: вытягивание воды из почвы корнями, подъем ее к надземным органам, испарение. Эти три процесса находятся в постоянном взаимодействии. В клетках корневой системы растения образуется так называемое осмотическое давление, под воздействием которого находящаяся в почве вода активно всасывается корнями.
Когда в результате появления большого количества листьев и повышения температуры окружающей среды вода как бы начинает высасываться из растения самой атмосферой, в сосудах растений возникает дефицит давления, передающийся вниз, к корням, и подталкивающий их к новой «работе». Как видим, корневая система растения тянет воду из почвы под воздействием двух сил – собственной, активной и пассивной, передающейся сверху, которая и вызывается транспирацией.
Кавитация
Чтобы поддерживать градиент давления, необходимый для того, чтобы растения оставались здоровыми, они должны постоянно поглощать воду своими корнями. Они должны быть в состоянии удовлетворить потребности в воде, потерянной из-за испарения. Если растение не может принести достаточно воды, чтобы оставаться в равновесии с транспирацией, происходит событие, известное как кавитация . Кавитация — это когда растение не может обеспечить свою ксилему достаточным количеством воды, поэтому вместо того, чтобы заполняться водой, ксилема начинает заполняться водяным паром. Эти частицы водяного пара собираются вместе и образуют засоры в ксилеме растения. Это не позволяет растению транспортировать воду по своей сосудистой системе. Нет очевидной картины того, где кавитация возникает по всей ксилеме растения. Если не принять эффективных мер по уходу, кавитация может привести к тому, что растение достигнет точки постоянного увядания и погибнет. Следовательно, у растения должен быть метод, с помощью которого можно удалить эту кавитационную закупорку, или он должен создать новое соединение сосудистой ткани по всему растению. Растение делает это, закрывая устьица на ночь, что останавливает поток транспирации. Это затем позволяет корням создавать давление более 0,05 МПа, и это способно разрушить закупорку и наполнять ксилему водой, повторно соединяя сосудистую систему. Если растение не может создать достаточное давление, чтобы устранить засорение, оно должно предотвратить распространение засора с помощью груши, а затем создать новую ксилему, которая может повторно соединить сосудистую систему растения.
Ученые начали использовать магнитно-резонансную томографию (МРТ) для неинвазивного мониторинга внутреннего состояния ксилемы во время транспирации. Этот метод визуализации позволяет ученым визуализировать движение воды по всему растению. Он также способен видеть, в какой фазе находится вода в ксилеме, что позволяет визуализировать события кавитации. Ученые смогли увидеть, что в течение 20 часов солнечного света более 10 сосудов ксилемы начали заполняться частицами газа, становящимися кавитацией. Технология МРТ также позволила увидеть процесс восстановления этих ксилемных структур на заводе. После трех часов нахождения в темноте было замечено, что сосудистая ткань пополнилась жидкой водой. Это стало возможным, потому что в темноте устьица растения закрыты и транспирация больше не происходит. Когда транспирация прекращается, кавитационные пузыри разрушаются давлением, создаваемым корнями. Эти наблюдения предполагают, что МРТ способны контролировать функциональное состояние ксилемы и позволяют ученым впервые просматривать события кавитации.
Интенсивность транспирации
Интенсивность транспирации – это количество влаги, испаряемой с дм 2 растения за расчетную единицу времени. Данный параметр регулируется величиной раскрытия устьичных щелей, которая, в свою очередь, зависит от количества попадающего на растение света. Далее рассмотрим, как влияет свет на интенсивность транспирации.
Деформация клеток эпидермиса проходит под действием фотосинтеза, в процессе которого происходит преобразование крахмала в сахара.
- При свете у растений начинается процесс фотосинтеза. Давление в замыкающих клетках увеличивается, что дает возможность вытягивать воду из соседних клеток эпидермиса. Объем клеток увеличивается, устьица раскрываются.
- В вечернее и ночное время происходит преобразования сахаров в крахмал, в процессе которого клетки эпидермиса «откачивают» влагу из замыкающих клеток растения. Их объем уменьшается, устьица закрываются.
Помимо света на интенсивность транспирации оказывает влияние ветер и физические характеристики воздуха:
- Чем ниже уровень влажности атмосферного воздуха, тем быстрее происходит испарение воды, а значит и скорость влагообмена.
- При повышении температуры возрастает упругость водяных паров, которая приводит к снижению влажностных характеристик окружающей среды и увеличению объема испаряемой воды.
- Под влиянием ветра значительно увеличивается скорость испарение влаги, тем самым ускоряется перенос влажного воздуха с поверхности листа, вызывая усиление водообмена.
Для определения данного параметра не следует забывать и об уровне влажности почвы. Если ее недостаточно, значит и наблюдается ее недостаток в растении. Снижение объема влаги в растительном организме автоматически изменяет интенсивность испарения.
Лист как орган транспирации. Устьичная и кутикулярная транспирация
Основным транспирирующим органом является лист. Средняя толщина листа составляет 100—200 мкм. Паренхимные клетки листа расположены рыхло, между ними имеется система межклетников, которые занимают от 15 до 25% объема листа.
Эпидермис — покровная ткань листа, состоит из компактно расположенных клеток, наружные стенки которых утолщены. Кроме того, листья большинства растений покрыты кутикулой. Кутикула варьирует как по составу, так и по толщине. Более развитой кутикулой характеризуются листья светолюбивых растений по сравнению с теневыносливыми и засухоустойчивых по сравнению с влаголюбивыми.
Кутикула вместе с клетками эпидермиса образует как бы барьер на пути испарения паров воды. Удаление кутикулы во много раз повышает интенсивность испарения. Все эти особенности выработались в процессе эволюции как приспособление к сокращению испарения. Для соприкосновения листа с атмосферой имеются поры — устьица.
Устьице — это отверстие (щель), ограниченная двумя замыкающими клетками.
Устьица встречаются у всех наземных органов растения, но больше всего у листьев. Каждая замыкающая клетка устьица в отличие от клеток эпидермиса имеет хлоропласта. В них происходит фотосинтез, хотя с меньшей интенсивностью, чем в клетках мезофилла. Устьица — одно из оригинальных приспособлений, обладающих способностью открываться и закрываться в зависимости от насыщенности замыкающих клеток водой. Обычно устьичные отверстия ограничены двумя замыкающими клетками, стенки которых неравномерно утолщены.
У двудольных растений замыкающие клетки бобовидной, или полулунной, формы, при этом их внутренние прилегающие друг к другу клеточные стенки более толстые, а внешние — более тонкие. Протопласты замыкающих клеток связаны в единое целое перфорациями в основании граничащих общих стенок. Когда воды мало, замыкающие клетки плотно прилегают друг к другу и устьичная щель закрыта. Когда воды в замыкающих клетках много, то она давит на клеточные стенки, и более тонкие стенки растягиваются сильнее, а более толстые втягиваются внутрь, между замыкающими клетками появляется щель.
При насыщении водой более тонкие стенки на концах растягиваются и раздвигают замыкающие клетки, благодаря чему образуется щель.
Число устьичных отверстий колеблется в зависимости от вида растений от 10 до 600 на 1 мм2 листа. У многих растений (75% видов), в том числе для большинства древесных, устьица расположены на нижней стороне листа.
Устьица соединяют внутренние пространства листа с внешней средой. Вода поступает в лист через сеть жилок, в которых расположены сосудистые элементы. Возможны три пути испарения: через устьица — устьичная, кутикулу — кутикулярная и через чечевички — лентикулярная транспирация.
Впервые разграничение на кутикулярную и устьичную транспирацию было введено в 1877.
Кутикулярная транспирация. В том, что действительно испарение идет не только через устьица, но и через кутикулу, легко убедиться.
Так если взять листья, у которых устьица расположены только с нижней стороны (например, листья яблони), и замазать эту сторону вазелином, то испарение воды будет продолжаться, хотя и в значительно меньших размерах.
Следовательно, определенное количество воды испаряется через кутикулу. Интенсивность этого процесса прежде всего определяется толщиной слоя кутикулы. Имеет значение также возраст листа. Молодые листья, как правило, имеют слабо развитую кутикулу и, следовательно, более интенсивную кутикулярную транспирацию.
У старых листьев юля кутикулярной транспирации снова возрастает, так как, хотя кутикула и сохраняет достаточную толщину, в ней появляются трещины, через которые легко проходят пары воды.
Трещины в кутикуле могут появляться и после временного завядания листьев, благодаря чему транспирация усиливается. Кутикулярная транспирация зависит от оводненности листа. При насыщении кутикулы водой испарение идет интенсивнее, а при подсыхании кутикулы — снижается.
Суточный ход транспирации
В течение суток уровень испарения влаги у растений меняется:
- Ночью, процесс водообмена между растением и окружающим воздухом практически останавливается. Это обусловлено отсутствием солнца, закрытием отверстий эпидермиса, снижением температуры атмосферного воздуха и увеличением уровня его влажности.
- На рассвете, устья открываются. Степень их раскрытия увеличивается с изменением освещенности, климатических и физических показателей воздушных масс.
- Максимальная интенсивность транспирации у растений наблюдается в полдень, к 12-13 часам. На данный процесс влияет напряженность солнечного света.
- При недостаточной влажности в дневной период, интенсивность водообмена может снижаться. Этот механизм позволяет растению значительно сократить потерю влаги, защитив себя от увядания.
- При снижении солнечной инсоляции в вечерние часы интенсивность транспирации вновь возрастает.
Суточный процесс влагообмена также зависит от вида и возраста растений, региона произрастания, схемы расположения листьев.
У кактусов, повышение уровня транспирации происходит исключительно ночью, когда устья полностью раскрыты. У растений, листва которых повернута боковой частью к горизонту, данный процесс начинается непосредственно с первыми лучами солнечного света.
Определение транспирации в биологии — видео
https://youtube.com/watch?v=f0MoAb0XMEs
http://www.lineyka.net/raboty-na-dache/transpiracija-u-rastenij-sutochnyj-hod.htmlhttp://studopedia.ru/5_97143_transpiratsiya-ee-znachenie-list-kak-organ-transpiratsii-vidi-transpiratsii-ee-pokazateli-sutochniy-hod-transpiratsii-vliyanie-vneshnih-uslovii.htmlhttp://glav-dacha.ru/transpiraciya-u-rasteniy/
Женские духи Tom Ford Black Orchid: описание аромата
Сперва сообщим, как видит эту композицию сам создатель. К слову сказать, «Черная орхидея» является в некотором роде дебютанткой. Это первый восточный аромат, созданный Томом Фордом для женщин. Как утверждает создатель, композиция балансирует на грани классики и чего-то неординарного, дерзкого. Доминантой служит томная орхидея и теплая древесина. Раскрывается композиция со сложного аккорда иланг-иланга и черного трюфеля. Чтобы придать нотку свежести в эту увертюру, автор примешал к ним черную смородину и бергамот. В сердце композиции, конечно же, царит черная орхидея, аромат которой удалось извлечь с помощью особой технологии. Эту томную и магическую красавицу тропиков оттеняют фруктовые аккорды, цветы темной окраски и насыщенный аромат лотоса.
Роковая женщина не может всегда держать покоренного мужчину в напряжении. База у этого аромата похожа на материнские объятия. В них можно забыться, бесконечно купаясь в теплой ванили, черном мексиканском шоколаде, сандале, ветивере, ладане и пачули. Парфюм Tom Ford Black Orchid (женский) очень стойкий, шлейф струящийся, очень характерный, но не душный. Он окутывает свою хозяйку, и как будто щитом отгораживает ее от серых будней, давая ей силу почувствовать себя неотразимой. Ведь именно этого так часто не хватает сегодняшним дамам.
Тест на тему: «Значение воды в жизни растений. Испарение воды листьями»
Лимит времени:
из 15 заданий окончено
Вопросы:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
Информация
Проверочное тестовое задание включает в себя вопросы с одним и несколькими правильными ответами
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается…
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: из 15
Ваше время:
Время вышло
Вы набрали из баллов ()
Средний результат | |
Ваш результат |
Место | Имя | Записано | Баллы | Результат |
---|---|---|---|---|
Таблица загружается | ||||
Нет данных | ||||
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- С ответом
- С отметкой о просмотре
- Задание 1 из 15
- кальция
- воды
- азота
- калия
- водорода
Правильно Неправильно
- Задание 2 из 15
- фотосинтезу
- дыханию
- росту растения
- продвижению воды по стеблю
- размножению растений
Правильно Неправильно
- Задание 3 из 15
- защищает листья от перегрева солнечными лучами
- замедляет процесс фотосинтеза
- усиливает деление клеток
- ускоряет процесс дыхания
- увеличивает количество глюкозы в клетках
Правильно Неправильно
- Задание 4 из 15
- трансляция
- транскрипция
- фотосинтез
- транспирация
- дыхание
Правильно Неправильно
- Задание 5 из 15
- столбчатую ткань листа
- хлоропласты
- эпидермис
- межклеточное вещество
- устьица
Правильно Неправильно
- Задание 6 из 15
- влага не испаряется вообще
- уменьшается образование глюкозы
- больше испаряется влаги
- меньше испаряется влаги
- замедляется процесс дыхания
Правильно Неправильно
- Задание 7 из 15
- открываются
- закрываются
- увеличиваются в количестве
- превращаются в колючки
- превращаются в чешуйки
Правильно Неправильно
- Задание 8 из 15
- в почках
- в стеблях
- в корнях
- в листьях
- в плодах
Правильно Неправильно
- Задание 9 из 15
- крупные и светло-зеленые, на них очень мало устьиц
- крупные и темно-зеленые, на них очень мало устьиц
- мелкие и темно-зеленые, на них очень много устьиц
- крупные и темно-зеленые, на них очень много устьиц
- мелкие и светло-зеленые, на них очень много устьиц
Правильно Неправильно
- Задание 10 из 15
- замедлить фотосинтез
- ускорить дыхание
- окончательно прекратить испарение
- ускорить процесс испарения
- замедлить процесс испарения
Правильно Неправильно
- Задание 11 из 15
- на колючках
- на чешуйках
- на плодах
- в молодых побегах
- на нижней стороне листа
- на верхней стороне листа
- на корнях
- отсутствуют
Правильно Неправильно
- Задание 12 из 15
- эфирными маслами
- восковым налетом
- ядовитыми волосками
- густыми волосками
- столонами
- усиками
- колючками
- чешуйками
Правильно Неправильно
- Задание 13 из 15
- минеральных солей
- сахаров
- жиров
- белков
- нуклеиновых кислот
- фосфолипидов
- целлюлозы
- пектиновых веществ
Правильно Неправильно
- Задание 14 из 15
- устьица закрываются
- транспирация прекращается
- транспирация усиливается
- устьица открываются
- устьица исчезают
- листья изменяют свою форму
- выделяется много кислорода
- выделяется много углекислого газа
Правильно Неправильно
- Задание 15 из 15
Насыщенность воздуха и почвы влагой способствует
- превращению листьев в чешуйки
- превращению листьев в колючки
- исчезновению листьев
- увеличению размеров листьев
- уменьшению размеров листьев
- уменьшению количества устьиц
- увеличению количества цветков
- уменьшению количества цветков
Правильно Неправильно
Проект «Что такое транспирация у растений»
Транспирация
– это испарение воды
листьями. Она, испаряясь,
выходит через устьица (маленькие поры
на поверхности листьев). Этот процесс
важен для выживания любого растительного
организма. Его скорость зависит от
температуры воздуха и солнечного света.
Испарение воды листьями
способствует ее движению внутри
растения, а также растворению минеральных
солей, необходимых для питания и
охлаждения.
Большая часть поглощаемой влаги выделяется в процессе транспирации. Сложно разделить процессы испарения и транспирации, поэтому данное явление зачастую называется «эвапотранспирацией». Название сочетает два понятия: первое происходит от латинского слова «evaporatio» (испарение), суть второго описана выше.
Транспирация происходит у всех растений. Ее скорость также зависит от их физических особенностей и условий окружающей среды. Поскольку влага выделяется, главным образом, через листья, то процесс транспирации у растений с крупными листьями выражен ярче, чем у тех, у которых они небольшие.
Такие
факторы, как влажность воздуха и
температура, также влияют на скорость
транспирации. Почва тоже должна быть
достаточно влажной. Благодаря этому
проекту вы сможете сопоставить то, что
видите, с процессом проникновения влаги
в ткани растительных организмов и ее
выделения путём испарения.
Этот
опыт по биологии поможет
вам определить, сколько влаги способно
поглотиться и выделиться через испарение
воды листьями за определённый
промежуток времени. Две трубки для
тестирования или два продолговатых
трубчатых контейнера на три четверти
заполняются водой. В одну из них помещается
стебель. Нужно следить за уровнем воды,
делая записи. Измерять ее уровень нужно
через определённый промежуток времени.
На основе полученных результатов
подготовьте таблицы и графики. Этот
проект поможет подтвердить или
опровергнуть идею о том, что
растения выделяют влагу во время процесса
под названием «транспирация», вследствие
которого происходит испарение.
Что нам понадобится:
- 2 тестовые трубки;
- пустая металлическая банка;
- пластиковый пакет;
- вода;
- ручка;
- линейка;
- изолента;
- секундомер или часы;
- свежая ветка или небольшие веточки с листьями (не меньше 5 на каждой из них).
За
исключение ветки и тестовых трубок, все
материалы для данного проекта можно
приобрести в магазинах или по интернету.
2 тестовые трубки можно взять на время
в лаборатории школы или приобрести в
магазине. Большинство детских наборов
юного химика включает инструменты,
которые пригодны для этого проекта.
Ход эксперимента:
- Заполните две трубки водой приблизительно на три четверти. Поставьте их в пустую металлическую банку.
- Для того чтобы контролировать испарение, накройте одну тестовую трубку чистым целлофаном. Закрепите его при помощи изоленты.
- Проткните стеблем целлофан. Он должен находиться в прямом положении. Отверстие запечатайте при помощи изоленты.
- Линейкой измерьте количество воды в каждой трубке. Убедитесь, что верно измерили ее уровень. Держите ее прямо и проведите измерение от верхней границы до дна. Запишите полученные данные в таблицу.
Время | Тест с веткой (A) | Тест без ветки (B) |
Начало | ||
Через 15 мин. | ||
Через 30 мин. | ||
Через 45 мин. | ||
Через 60 мин. |
- Подождите 15 минут. Измерьте уровень воды в каждой трубке ещё раз. Запишите полученные данные в таблицу.
- Повторите шаг 4 ещё три раза. Каждый раз записывайте полученные результаты.
- Подождите 24 часа. Измерьте уровень воды в каждой трубке. Запишите результаты.
- Используя полученные данные, составьте гистограмму (в виде столбцов) или линейную диаграмму. На оси X обозначьте скорость транспирации (в минутах), а на оси Y – уровень воды (высота в мм).
- Подсчитайте скорость, выполняя следующие операции:
Тест с веткой:
Начальный уровень – Уровень через 24
часа = Разница уровня (A)
Тест без ветки:
Начальный уровень – Уровень через 24
часа = Разница (B)
Разница уровня воды благодаря транспирации:
Разница A — Разница B = Потеря воды через транспирацию
Начальное значение | Значение через 24 часа | Количество потерянной воды | |
Тест с веткой | |||
Тест без ветки |
- Чтобы подсчитать скорость транспирации и испарения в час, используйте следующие формулы: Количество потерянной воды ÷ 24 часа = ________ испарения воды/час.
Вывод:
Вследствие чего уровень воды в трубке со стеблем уменьшается? Происходит ли то же самое в трубке, заполненной водой, но без растения? Какова скорость транспирации по вашим подсчётам? Используя графики, сравните ее скорость со скоростью испарения. Что служило контрольной точкой для данного исследования?
Механизм транспирации
Процесс жизнедеятельности любого растения неразрывно связан с потреблением влагой. Из суточного объема полученной воды для фотосинтеза и физиологических потребностей растению необходимо только 10%. Оставшиеся 90% испаряются в атмосферу.
Транспирация – это процесс перемещения жидкости по растительному организму и ее испарения наземной частью растения. В транспирации участвуют листья, стебли, цветы, плоды, корневая система растительного организма.
Зачем растению нужно испарять влагу? Транспирация позволяет растению получать из грунта питательные вещества и микроэлементы, растворенные в воде.
Механизм действия следующий:
- Освобождаясь от лишней влаги, в водопроводящих тканях растений создается отрицательное давление.
- Разряжение «подтягивает» влагу из соседних клеток ксилемы, и так, по цепочке, непосредственно до всасывающих клеток корневой системы.
Благодаря процессу испарения растения естественным образом регулируют свою температуру, защищая себя от перегрева. Доказано, что температура транспирирующего листа ниже не испаряющего влагу. Разница достигает 7°С.
У растений различают две разновидности влагообмена:
- посредством устьиц;
- через кутикулы.
Чтобы понять принцип действия данного явления необходимо вспомнить строение листа из школьного курса биологии.
Лист растения состоит из:
- Клеток эпидермиса, которые образуют основной защитный слой.
- Кутикула – восковой (внешний) защитный слой.
- Мезофилл или «мякоть» – основная ткань, расположенная между внешними слоями эпидермиса.
- Прожилки – «транспортные магистрали» листа, по которым перемещается влага насыщенная питательными веществами.
- Устья – отверстия в эпидермисе, контролирующие газообмен растения.
При устьичной транспирации, процесс испарения происходит в две стадии:
- Переход влаги из жидкой фазы в парообразную. Вода в жидком состоянии находится в клеточных оболочках. Пар формируется в межклеточном пространстве.
- Выделение газообразной влаги в атмосферу через устья эпидермиса.
При устьичном влагообмене растение может регулировать уровень испарения. Далее рассмотрим механизм действия данного процесса.
Кутикулярная транспирация регулирует испарение влаги с поверхности листьев при закрытых устьях. Интенсивность испарения жидкости зависит от толщины кутикулы и возраста растения.
Важно знать, что уровень устичной транспирации составляет от 80 до 90 % от объема испарения всего листа. Именно поэтому такой механизм является основным регулятором интенсивности испарения у растений
Влияющие факторы
Транспирация в живой природе протекает под различными внешними воздействиями. На ее интенсивность и качество влияет множество факторов окружающей среды.
Среди них выделяются:
- суточные циклы;
- количество солнечных дней в году;
- объем и агрессивность рентгеновского и ультрафиолетового излучения;
- экологическая обстановка в ареале произрастания;
- влажность и температура воздуха;
- уровень загрязнения атмосферной смеси вредными выбросами промышленного производства;
- сила ветра;
- активность вредителей.
Солнечный свет способствует раскрытию щелевых отверстий устьичных образований. В культивируемых зонах, парниковых, тепличных и оранжерейных комплексах эту функцию выполняют искусственные светодиодные или галогенные источники электромагнитного излучения.
Солнечное изучение энергично впитывается хлорофиллом – зеленым пигментом, задействованным в химической реакции фотосинтеза. В результате такого процесса возрастает температура листьев и усиливается парообразование. Активизация транспирации охлаждает поверхность, что лежит в основе ее терморегулирующей функции. Даже рассеянное излучение низкой интенсивности усиливает парообразование примерно на 30-40% в сравнении с показателем процесса, проходящего в ночное время или при вечерних сумерках.
Научные данные гласят, что 100 см2 кукурузных листьев в полной темноте испаряют 0,097 г жидкости за 1 ч. При мягком рассеянном освещении это показатель возрастает до 0,114 г, а под воздействием прямого солнечного излучения – до 0,785 г/ч. Не менее важный фактор влияния на естественный ход транспирации – температура атмосферного воздуха. По мере его нагревания испарительный процесс ускоряется, поскольку молекулы воды разгоняются и усиливается диффузия пара с коллоидной поверхности клеточных мембран.
Транспирация у растений – это процесс, подверженный многофакторному как естественному, так и техногенному влиянию. Промышленные загрязнения воздуха повышают его плотность, а выбросы в атмосферу углекислых соединений создают парниковый эффект. Это приводит к резкому росту температуры и ускорению транспирации. Важный естественный фактор – сила ветра, которая играет неоднозначную роль в физиологических реакциях растительных организмов. В результате интенсивного движения атмосферных потоков тяжелые влажные слои заменяются легкими сухими.
Это оказывает существенное влияние на отвод испаренной воды из межклеточного пространства листьев. Порывы ветра провоцируют преждевременное замыкание устьичных щелей, что приводит к замедлению физиологической реакции.
Регуляция
Растение регулирует свой уровень транспирации с помощью изменения размера устьичных щелей. На уровень транспирации также влияет состояние атмосферы вокруг листа, влажность, температура и солнечный свет, а также состояние почвы и её температура и влажность. Кроме того, надо учитывать и размер растения, от которого зависит количество воды, поглощаемой корнями и, в дальнейшем, испаряемой через листья.
Особенность | Влияние на транспирацию |
---|---|
Количество листьев | Чем больше листьев, тем больше поверхность испарения и больше количество устьиц для газообмена. Это увеличивает потери воды. |
Количество устьиц | Чем больше на листе устьиц, тем больше воды испаряет лист. |
Размер листа | Лист с большей площадью испаряет больше воды, чем лист с маленькой. |
Наличие растительной кутикулы | Воскоподобная плёнка кутикулы плохо проницаема для воды и водяных паров и снижает испарение с поверхности растения, за исключением испарения через устьица. Блестящая поверхность кутикулы отражает солнечные лучи, снижая температуру листа и уровень испарения . Небольшие волоски (трихомы) на поверхности листа также снижают потерю воды, создавая рядом с поверхностью зону высокой влажности . Такие приспособления для сохранения воды можно наблюдать у многих растений из засушливых мест — ксерофитов. |
Содержание CO2 | У многих растений понижение уровня углекислого газа в воздухе приводит к повышению тургора замыкающих клеток и открытию устьиц . |
Уровень света | Помимо понижения уровня углекислого газа в процессе фотосинтеза свет может оказывать и непосредственное влияние на замыкающие клетки, заставляя их разбухать . |
Температура | Увеличение температуры увеличивает скорость испарения и уменьшает относительную влажность окружающей среды, что также увеличивает потерю воды. |
Относительная влажность | Сухой воздух вокруг листьев повышает уровень транспирации. |
Ветер | В стоячем воздухе рядом с поверхностью испарения образуется область с высокой влажностью, что замедляет потерю воды. |
Во время сезона роста лист может испарить количество воды во много раз превышающее его собственный вес. Один гектар посева пшеницы испаряет за лето 2000—3000 тонн воды . В сельском хозяйстве оперируют понятием транспирационного коэффициента, это соотношение между затраченной массой воды и приростом сухой массы. Обычно он составляет от 200 до 600 (1000) , т.е для образования одного килограмма сухой массы сельхозкультуры необходимо от 200 до 1000 литров воды.
Для измерения уровня транспирации растений существует множество техник и приборов, включая потометры, лизиметры, порометры, фотосинтетические системы и термометрические сенсоры. Для измерения эвапотранспирации применяют главным образом изотопные методы . Недавние исследования показывают, что вода, испарённая растениями, отличается по изотопному составу от грунтовых вод.
У пустынных растений есть специальные приспособления, позволяющие снизить транспирацию и сохранить воду, такие как толстая кутикула, уменьшенная площадь листьев и волоски на листьях. Многие из них используют так называемый CAM-фотосинтез, когда днём устьица закрыты, а открываются только ночью, когда температура ниже, а влажность больше.